::p_load(sf, tidyverse) pacman
Hands-on Exercise 1: Geospatial Data Wrangling with R
Overview
In this hands-on exercise, I learn how to import and wrangle geospatial data using appropriate R packages.
Getting Started
The code chunk below installs and loads sf and tidyverse packages into R environment.
Importing Geospatial Data
Importing polygon features data
Reading the Master Planning 2014 Subzone shapefile into a dataframe
<- st_read(dsn = "data/geospatial", layer = "MP14_SUBZONE_WEB_PL") mpsz
Reading layer `MP14_SUBZONE_WEB_PL' from data source
`D:\phlong2023\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
Reading the CyclingPath shapefile into a dataframe
<- st_read(dsn = "data/geospatial",layer = 'CyclingPathGazette') cyclingpath
Reading layer `CyclingPathGazette' from data source
`D:\phlong2023\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 2558 features and 2 fields
Geometry type: MULTILINESTRING
Dimension: XY
Bounding box: xmin: 11854.32 ymin: 28347.98 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21
Read the Pre-School Locations kml file into a dataframe using a complete path
<- st_read('data/geospatial/PreSchoolsLocation.kml') preschool
Reading layer `PRESCHOOLS_LOCATION' from data source
`D:\phlong2023\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial\PreSchoolsLocation.kml'
using driver `KML'
Simple feature collection with 2290 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
Checking the Content of a Simple Feature DataFrame
Working with st_geometry()
Using st_geometry() to retrieve basic information of the dataframe
st_geometry(mpsz)
Geometry set for 323 features
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:
Working with glimpse()
Use glimpse() to get the data types of each column and some of their values
glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1, 3, 2, 2, …
$ SUBZONE_N <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERSON HIL…
$ SUBZONE_C <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03", "BMSZ07",…
$ CA_IND <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N", "N", "N",…
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUKIT MERAH",…
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "QT", "QT",…
$ REGION_N <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "CENT…
$ REGION_C <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR",…
$ INC_CRC <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF02B13E0E5",…
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05…
$ X_ADDR <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96, 25358.82,…
$ Y_ADDR <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70, 29991.38,…
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594, 4428.913,…
$ SHAPE_Area <dbl> 1630379.27, 559816.25, 160807.50, 595428.89, 387429.44, 103…
$ geometry <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOLYGON (…
Working with head()
head() lets us inspect the top n rows of the dataframe
head(mpsz, n= 5)
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N
1 1 1 MARINA SOUTH MSSZ01 Y MARINA SOUTH
2 2 1 PEARL'S HILL OTSZ01 Y OUTRAM
3 3 3 BOAT QUAY SRSZ03 Y SINGAPORE RIVER
4 4 8 HENDERSON HILL BMSZ08 N BUKIT MERAH
5 5 3 REDHILL BMSZ03 N BUKIT MERAH
PLN_AREA_C REGION_N REGION_C INC_CRC FMEL_UPD_D X_ADDR
1 MS CENTRAL REGION CR 5ED7EB253F99252E 2014-12-05 31595.84
2 OT CENTRAL REGION CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3 SR CENTRAL REGION CR C35FEFF02B13E0E5 2014-12-05 29654.96
4 BM CENTRAL REGION CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5 BM CENTRAL REGION CR 85D9ABEF0A40678F 2014-12-05 26201.96
Y_ADDR SHAPE_Leng SHAPE_Area geometry
1 29220.19 5267.381 1630379.3 MULTIPOLYGON (((31495.56 30...
2 29782.05 3506.107 559816.2 MULTIPOLYGON (((29092.28 30...
3 29974.66 1740.926 160807.5 MULTIPOLYGON (((29932.33 29...
4 29933.77 3313.625 595428.9 MULTIPOLYGON (((27131.28 30...
5 30005.70 2825.594 387429.4 MULTIPOLYGON (((26451.03 30...
Plotting Geospatial Data
The default plot of an sf object is a multi-plot of all attributes, up to a reasonable maximum. This can be seen using the plot() function.
plot(mpsz)
We can choose to plot only the geometry (outline) by using st_geometry()
plot(st_geometry(mpsz))
We can also choose the specific attribute of the dataframe we would like to plot by addressing it in the R dataframe
plot(mpsz['PLN_AREA_N'])
Working with Projection
Map projection is an important property of a geospatial data. In order to perform geoprocessing using two geospatial data, we need to ensure that both geospatial data are projected using similar coordinate system.
The process of projecting one dataframe from one coordinate system to another is called projection transformation.
Assigning EPSG code to a simple feature data frame
Identifying the coordinate system of a dataframe using st_crs()
st_crs(mpsz)
Coordinate Reference System:
User input: SVY21
wkt:
PROJCRS["SVY21",
BASEGEOGCRS["SVY21[WGS84]",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]],
ID["EPSG",6326]],
PRIMEM["Greenwich",0,
ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["unnamed",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
In order to assign the correct EPSG code, use st_set_crs()
<- st_set_crs(mpsz,3414) mpsz3414
Double check the new ESPG using st_crs()
st_crs(mpsz3414)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
Transforming the projection of preschool from WGS84 to SVY21
In geospatial analytics, it is very common for us to transform the original data from geographic coordinate system to projected coordinate system. This is because geographic coordinate system is not appropriate if the analysis need to use distance or/and area measurements.
Check the coordinate system for the preschool dataframe
st_geometry(preschool)
Geometry set for 2290 features
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
First 5 geometries:
st_set_crs() is not appropriate here because we need to reproject the dataframe from one coordinate system to another coordinate system mathematically.
This can be performed using st_transform()
<- st_transform(preschool, crs = 3414) preschool3414
Double-check the coordinate system for preschool3414
st_geometry(preschool3414)
Geometry set for 2290 features
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 11810.03 ymin: 25596.33 xmax: 45404.24 ymax: 49300.88
z_range: zmin: 0 zmax: 0
Projected CRS: SVY21 / Singapore TM
First 5 geometries:
Importing and Converting Aspatial Data
Importing the Aspatial Data
We can read the listings csv into an R tibble dataframe using read_csv() of readr
<- read_csv('data/aspatial/listings.csv') listings
We can use list(), instead of glimpse() in order to see the columns, data types, and some rows of the new dataframe
list(listings)
[[1]]
# A tibble: 3,483 × 75
id listing_url scrape_id last_scraped source name description
<dbl> <chr> <dbl> <date> <chr> <chr> <chr>
1 71609 https://www.airbnb.co… 2.02e13 2023-09-23 previ… Vill… For 3 room…
2 71896 https://www.airbnb.co… 2.02e13 2023-09-23 previ… Home… <b>The spa…
3 71903 https://www.airbnb.co… 2.02e13 2023-09-23 previ… Home… Like your …
4 275343 https://www.airbnb.co… 2.02e13 2023-09-23 city … Rent… **IMPORTAN…
5 275344 https://www.airbnb.co… 2.02e13 2023-09-23 city … Rent… Lovely hom…
6 289234 https://www.airbnb.co… 2.02e13 2023-09-23 previ… Home… This whole…
7 294281 https://www.airbnb.co… 2.02e13 2023-09-23 city … Rent… I have 3 b…
8 324945 https://www.airbnb.co… 2.02e13 2023-09-23 city … Rent… **IMPORTAN…
9 330095 https://www.airbnb.co… 2.02e13 2023-09-23 city … Rent… **IMPORTAN…
10 369141 https://www.airbnb.co… 2.02e13 2023-09-23 city … Plac… A room in …
# ℹ 3,473 more rows
# ℹ 68 more variables: neighborhood_overview <chr>, picture_url <chr>,
# host_id <dbl>, host_url <chr>, host_name <chr>, host_since <date>,
# host_location <chr>, host_about <chr>, host_response_time <chr>,
# host_response_rate <chr>, host_acceptance_rate <chr>,
# host_is_superhost <lgl>, host_thumbnail_url <chr>, host_picture_url <chr>,
# host_neighbourhood <chr>, host_listings_count <dbl>, …
Creating a simple feature dataframe from an aspatial dataframe
st_as_sf() can be used to convert the listing dataframe into a simple feature dataframe. Note that:
- coords argument requires the column name of the x-coordinates first (longitude) then the column name of the y-coordinates (latitude)
- crs argument requires the specific coordinates system. As we suspect the coordinate system of listings to be WGS84, this would be crs = 4326 . Singapore’s EPSG code is 3414 as we have used before.
- We use %>% in dplyr to nest st_transform() to reproject the new simple feature dataframe into SVY21 (EPSG: 3414) coordinates system.
<- st_as_sf(listings,
listings_sf coords = c('longitude','latitude'),
crs=4326)%>%
st_transform(crs=3414)
glimpse() can be used to view the new simple feature dataframe, its data types, and some row values. Notice that a new column called geometry has been added and longitude and latitude have been dropped.
glimpse(listings_sf)
Rows: 3,483
Columns: 74
$ id <dbl> 71609, 71896, 71903, 2753…
$ listing_url <chr> "https://www.airbnb.com/r…
$ scrape_id <dbl> 2.023092e+13, 2.023092e+1…
$ last_scraped <date> 2023-09-23, 2023-09-23, …
$ source <chr> "previous scrape", "previ…
$ name <chr> "Villa in Singapore · ★4.…
$ description <chr> "For 3 rooms.Book room 1&…
$ neighborhood_overview <chr> NA, NA, "Quiet and view o…
$ picture_url <chr> "https://a0.muscache.com/…
$ host_id <dbl> 367042, 367042, 367042, 1…
$ host_url <chr> "https://www.airbnb.com/u…
$ host_name <chr> "Belinda", "Belinda", "Be…
$ host_since <date> 2011-01-29, 2011-01-29, …
$ host_location <chr> "Singapore", "Singapore",…
$ host_about <chr> "Hi My name is Belinda -H…
$ host_response_time <chr> "within a few hours", "wi…
$ host_response_rate <chr> "100%", "100%", "100%", "…
$ host_acceptance_rate <chr> "100%", "100%", "100%", "…
$ host_is_superhost <lgl> FALSE, FALSE, FALSE, FALS…
$ host_thumbnail_url <chr> "https://a0.muscache.com/…
$ host_picture_url <chr> "https://a0.muscache.com/…
$ host_neighbourhood <chr> "Tampines", "Tampines", "…
$ host_listings_count <dbl> 5, 5, 5, 52, 52, 5, 7, 52…
$ host_total_listings_count <dbl> 15, 15, 15, 65, 65, 15, 8…
$ host_verifications <chr> "['email', 'phone']", "['…
$ host_has_profile_pic <lgl> TRUE, TRUE, TRUE, TRUE, T…
$ host_identity_verified <lgl> TRUE, TRUE, TRUE, TRUE, T…
$ neighbourhood <chr> NA, NA, "Singapore, Singa…
$ neighbourhood_cleansed <chr> "Tampines", "Tampines", "…
$ neighbourhood_group_cleansed <chr> "East Region", "East Regi…
$ property_type <chr> "Private room in villa", …
$ room_type <chr> "Private room", "Private …
$ accommodates <dbl> 3, 1, 2, 1, 1, 4, 2, 1, 1…
$ bathrooms <lgl> NA, NA, NA, NA, NA, NA, N…
$ bathrooms_text <chr> "1 private bath", "Shared…
$ bedrooms <dbl> NA, NA, NA, NA, NA, 3, NA…
$ beds <dbl> 3, 1, 2, 1, 1, 5, 1, 1, 1…
$ amenities <chr> "[\"Private backyard \\u2…
$ price <chr> "$150.00", "$80.00", "$80…
$ minimum_nights <dbl> 92, 92, 92, 60, 60, 92, 9…
$ maximum_nights <dbl> 365, 365, 365, 999, 999, …
$ minimum_minimum_nights <dbl> 92, 92, 92, 60, 60, 92, 9…
$ maximum_minimum_nights <dbl> 92, 92, 92, 60, 60, 92, 9…
$ minimum_maximum_nights <dbl> 1125, 1125, 1125, 1125, 1…
$ maximum_maximum_nights <dbl> 1125, 1125, 1125, 1125, 1…
$ minimum_nights_avg_ntm <dbl> 92, 92, 92, 60, 60, 92, 9…
$ maximum_nights_avg_ntm <dbl> 1125, 1125, 1125, 1125, 1…
$ calendar_updated <lgl> NA, NA, NA, NA, NA, NA, N…
$ has_availability <lgl> TRUE, TRUE, TRUE, TRUE, T…
$ availability_30 <dbl> 28, 28, 28, 1, 30, 28, 30…
$ availability_60 <dbl> 58, 58, 58, 1, 60, 58, 60…
$ availability_90 <dbl> 88, 88, 88, 1, 90, 88, 90…
$ availability_365 <dbl> 89, 89, 89, 275, 274, 89,…
$ calendar_last_scraped <date> 2023-09-23, 2023-09-23, …
$ number_of_reviews <dbl> 20, 24, 47, 22, 17, 12, 1…
$ number_of_reviews_ltm <dbl> 0, 0, 0, 0, 3, 0, 0, 1, 3…
$ number_of_reviews_l30d <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 1…
$ first_review <date> 2011-12-19, 2011-07-30, …
$ last_review <date> 2020-01-17, 2019-10-13, …
$ review_scores_rating <dbl> 4.44, 4.16, 4.41, 4.40, 4…
$ review_scores_accuracy <dbl> 4.37, 4.22, 4.39, 4.16, 4…
$ review_scores_cleanliness <dbl> 4.00, 4.09, 4.52, 4.26, 4…
$ review_scores_checkin <dbl> 4.63, 4.43, 4.63, 4.47, 4…
$ review_scores_communication <dbl> 4.78, 4.43, 4.64, 4.42, 4…
$ review_scores_location <dbl> 4.26, 4.17, 4.50, 4.53, 4…
$ review_scores_value <dbl> 4.32, 4.04, 4.36, 4.63, 4…
$ license <chr> NA, NA, NA, "S0399", "S03…
$ instant_bookable <lgl> FALSE, FALSE, FALSE, TRUE…
$ calculated_host_listings_count <dbl> 5, 5, 5, 52, 52, 5, 7, 52…
$ calculated_host_listings_count_entire_homes <dbl> 0, 0, 0, 1, 1, 0, 1, 1, 1…
$ calculated_host_listings_count_private_rooms <dbl> 5, 5, 5, 51, 51, 5, 6, 51…
$ calculated_host_listings_count_shared_rooms <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ reviews_per_month <dbl> 0.14, 0.16, 0.31, 0.17, 0…
$ geometry <POINT [m]> POINT (41972.5 3639…
Geoprocessing with sf package
The sf package offers a wide range of geoprocessing (GIS) functions.
In this section, you will learn how to perform two commonly used geoprocessing functions, namely buffering and point in polygon count.
Buffering
The scenario:
The authority is planning to upgrade the exiting cycling path. To do so, they need to acquire 5 metres of reserved land on the both sides of the current cycling path. You are tasked to determine the extend of the land need to be acquired and their total area.
The solution
We can use st_buffer() to compute the 5-meter buffers around cycling paths
<- st_buffer(cyclingpath, dist =5,
buffer_cycling nQuadSegs = 30)
We can then calculate the area of each of the buffers using st_area()
$AREA <- st_area(buffer_cycling) buffer_cycling
Lastly, we can sum up all the areas of the buffers to derive the total land involved
sum(buffer_cycling$AREA)
1774367 [m^2]
Point-in-polygon count
The scenario:
A pre-school service group want to find out the numbers of pre-schools in each Planning Subzone.
The solution:
We can: first, identify pre-schools located inside each Planning Subzone by using st_intersects(), second, length() can be used to calculate number of pre-schools that falls inside each planning subzone.
$`PreSch Count` <- lengths(st_intersects(mpsz3414, preschool3414)) mpsz3414
summary() can be used to check the summary statistics of the newly created PreSch Count column in mpsz3414
summary(mpsz3414$`PreSch Count`)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 4.00 7.09 10.00 72.00
top_n() can be used to list the top n planning subzone with the highest number of pre-school
top_n(mpsz3414,1,`PreSch Count`)
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 39655.33 ymin: 35966 xmax: 42940.57 ymax: 38622.37
Projected CRS: SVY21 / Singapore TM
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N PLN_AREA_C
1 189 2 TAMPINES EAST TMSZ02 N TAMPINES TM
REGION_N REGION_C INC_CRC FMEL_UPD_D X_ADDR Y_ADDR SHAPE_Leng
1 EAST REGION ER 21658EAAF84F4D8D 2014-12-05 41122.55 37392.39 10180.62
SHAPE_Area geometry PreSch Count
1 4339824 MULTIPOLYGON (((42196.76 38... 72
We can also calculate the density of preschool by planning subzone:
First, st_area() can be used to derive the area of each planning subzone.
$AREA <- mpsz3414%>%
mpsz3414st_area()
Next, mutate() can be used to compute the density by using the previously created ‘PreSch Count’ and ‘AREA’ columns
<- mpsz3414 %>%
mpsz3414 mutate(`PreSch Density` = (`PreSch Count`/AREA)*1000000)
We can extract the planning subzone with the highest preschool density using top_n()
top_n(mpsz3414,1,`PreSch Density`)
Simple feature collection with 1 feature and 18 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 29501.64 ymin: 28623.75 xmax: 29976.93 ymax: 29362.03
Projected CRS: SVY21 / Singapore TM
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N PLN_AREA_C
1 27 8 CECIL DTSZ08 Y DOWNTOWN CORE DT
REGION_N REGION_C INC_CRC FMEL_UPD_D X_ADDR Y_ADDR
1 CENTRAL REGION CR 65AA82AF6F4D925D 2014-12-05 29730.2 29011.33
SHAPE_Leng SHAPE_Area geometry PreSch Count
1 2116.095 196619.9 MULTIPOLYGON (((29808.18 28... 7
AREA PreSch Density
1 196619.9 [m^2] 35.60169 [1/m^2]
Exploratory Data Analysis (EDA)
hist() can be used to plot a histogram to reveal the distribution of PreSch Density
hist(mpsz3414$`PreSch Density`)
ggplot2 allows us to draw a more complex plot with more customization option
ggplot(data = mpsz3414,
aes(x=as.numeric(`PreSch Density`)))+
geom_histogram(bins=20,
color='black',
fill = 'light blue')+
labs(title = 'Are pre-school evenly distributed in Singapore?',
subtitle = 'There are many planning sub-zones with a single pre-school while \n there are some planning sub-zones with at least 20 pre-schhools',
x = 'Pre-school density (per km sq)',
y = 'Frequency')
We can also create a scatter plot to display the relationship between Pre-School Density and Pre-School Count
ggplot(data = mpsz3414,
aes(x = as.numeric(`PreSch Density`),
y = `PreSch Count`))+
geom_point(color = 'black')+
xlim(0, 40)+
ylim(0, 40)+
labs(x = 'Pre-school density (per km sq',
y = 'Pre-school count')