Hands-on Exercise 1: Geospatial Data Wrangling with R

Published

November 15, 2023

Modified

November 18, 2023

Overview

In this hands-on exercise, I learn how to import and wrangle geospatial data using appropriate R packages.

Getting Started

The code chunk below installs and loads sf and tidyverse packages into R environment.

pacman::p_load(sf, tidyverse)

Importing Geospatial Data

Importing polygon features data

Reading the Master Planning 2014 Subzone shapefile into a dataframe

mpsz <- st_read(dsn = "data/geospatial", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `D:\phlong2023\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

Reading the CyclingPath shapefile into a dataframe

cyclingpath <- st_read(dsn = "data/geospatial",layer = 'CyclingPathGazette')
Reading layer `CyclingPathGazette' from data source 
  `D:\phlong2023\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 2558 features and 2 fields
Geometry type: MULTILINESTRING
Dimension:     XY
Bounding box:  xmin: 11854.32 ymin: 28347.98 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21

Read the Pre-School Locations kml file into a dataframe using a complete path

preschool <- st_read('data/geospatial/PreSchoolsLocation.kml')
Reading layer `PRESCHOOLS_LOCATION' from data source 
  `D:\phlong2023\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial\PreSchoolsLocation.kml' 
  using driver `KML'
Simple feature collection with 2290 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84

Checking the Content of a Simple Feature DataFrame

Working with st_geometry()

Using st_geometry() to retrieve basic information of the dataframe

st_geometry(mpsz)
Geometry set for 323 features 
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:

Working with glimpse()

Use glimpse() to get the data types of each column and some of their values

glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1, 3, 2, 2, …
$ SUBZONE_N  <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERSON HIL…
$ SUBZONE_C  <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03", "BMSZ07",…
$ CA_IND     <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N", "N", "N",…
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUKIT MERAH",…
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "QT", "QT",…
$ REGION_N   <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "CENT…
$ REGION_C   <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR",…
$ INC_CRC    <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF02B13E0E5",…
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05…
$ X_ADDR     <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96, 25358.82,…
$ Y_ADDR     <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70, 29991.38,…
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594, 4428.913,…
$ SHAPE_Area <dbl> 1630379.27, 559816.25, 160807.50, 595428.89, 387429.44, 103…
$ geometry   <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOLYGON (…

Working with head()

head() lets us inspect the top n rows of the dataframe

head(mpsz, n= 5)
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
  OBJECTID SUBZONE_NO      SUBZONE_N SUBZONE_C CA_IND      PLN_AREA_N
1        1          1   MARINA SOUTH    MSSZ01      Y    MARINA SOUTH
2        2          1   PEARL'S HILL    OTSZ01      Y          OUTRAM
3        3          3      BOAT QUAY    SRSZ03      Y SINGAPORE RIVER
4        4          8 HENDERSON HILL    BMSZ08      N     BUKIT MERAH
5        5          3        REDHILL    BMSZ03      N     BUKIT MERAH
  PLN_AREA_C       REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR
1         MS CENTRAL REGION       CR 5ED7EB253F99252E 2014-12-05 31595.84
2         OT CENTRAL REGION       CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3         SR CENTRAL REGION       CR C35FEFF02B13E0E5 2014-12-05 29654.96
4         BM CENTRAL REGION       CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5         BM CENTRAL REGION       CR 85D9ABEF0A40678F 2014-12-05 26201.96
    Y_ADDR SHAPE_Leng SHAPE_Area                       geometry
1 29220.19   5267.381  1630379.3 MULTIPOLYGON (((31495.56 30...
2 29782.05   3506.107   559816.2 MULTIPOLYGON (((29092.28 30...
3 29974.66   1740.926   160807.5 MULTIPOLYGON (((29932.33 29...
4 29933.77   3313.625   595428.9 MULTIPOLYGON (((27131.28 30...
5 30005.70   2825.594   387429.4 MULTIPOLYGON (((26451.03 30...

Plotting Geospatial Data

The default plot of an sf object is a multi-plot of all attributes, up to a reasonable maximum. This can be seen using the plot() function.

plot(mpsz)

We can choose to plot only the geometry (outline) by using st_geometry()

plot(st_geometry(mpsz))

We can also choose the specific attribute of the dataframe we would like to plot by addressing it in the R dataframe

plot(mpsz['PLN_AREA_N'])

Working with Projection

Map projection is an important property of a geospatial data. In order to perform geoprocessing using two geospatial data, we need to ensure that both geospatial data are projected using similar coordinate system.

The process of projecting one dataframe from one coordinate system to another is called projection transformation.

Assigning EPSG code to a simple feature data frame

Identifying the coordinate system of a dataframe using st_crs()

st_crs(mpsz)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]

In order to assign the correct EPSG code, use st_set_crs()

mpsz3414 <- st_set_crs(mpsz,3414)

Double check the new ESPG using st_crs()

st_crs(mpsz3414)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

Transforming the projection of preschool from WGS84 to SVY21

In geospatial analytics, it is very common for us to transform the original data from geographic coordinate system to projected coordinate system. This is because geographic coordinate system is not appropriate if the analysis need to use distance or/and area measurements.

Check the coordinate system for the preschool dataframe

st_geometry(preschool)
Geometry set for 2290 features 
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84
First 5 geometries:

st_set_crs() is not appropriate here because we need to reproject the dataframe from one coordinate system to another coordinate system mathematically.

This can be performed using st_transform()

preschool3414 <- st_transform(preschool, crs = 3414)

Double-check the coordinate system for preschool3414

st_geometry(preschool3414)
Geometry set for 2290 features 
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 11810.03 ymin: 25596.33 xmax: 45404.24 ymax: 49300.88
z_range:       zmin: 0 zmax: 0
Projected CRS: SVY21 / Singapore TM
First 5 geometries:

Importing and Converting Aspatial Data

Importing the Aspatial Data

We can read the listings csv into an R tibble dataframe using read_csv() of readr

listings <- read_csv('data/aspatial/listings.csv')

We can use list(), instead of glimpse() in order to see the columns, data types, and some rows of the new dataframe

list(listings)
[[1]]
# A tibble: 3,483 × 75
       id listing_url            scrape_id last_scraped source name  description
    <dbl> <chr>                      <dbl> <date>       <chr>  <chr> <chr>      
 1  71609 https://www.airbnb.co…   2.02e13 2023-09-23   previ… Vill… For 3 room…
 2  71896 https://www.airbnb.co…   2.02e13 2023-09-23   previ… Home… <b>The spa…
 3  71903 https://www.airbnb.co…   2.02e13 2023-09-23   previ… Home… Like your …
 4 275343 https://www.airbnb.co…   2.02e13 2023-09-23   city … Rent… **IMPORTAN…
 5 275344 https://www.airbnb.co…   2.02e13 2023-09-23   city … Rent… Lovely hom…
 6 289234 https://www.airbnb.co…   2.02e13 2023-09-23   previ… Home… This whole…
 7 294281 https://www.airbnb.co…   2.02e13 2023-09-23   city … Rent… I have 3 b…
 8 324945 https://www.airbnb.co…   2.02e13 2023-09-23   city … Rent… **IMPORTAN…
 9 330095 https://www.airbnb.co…   2.02e13 2023-09-23   city … Rent… **IMPORTAN…
10 369141 https://www.airbnb.co…   2.02e13 2023-09-23   city … Plac… A room in …
# ℹ 3,473 more rows
# ℹ 68 more variables: neighborhood_overview <chr>, picture_url <chr>,
#   host_id <dbl>, host_url <chr>, host_name <chr>, host_since <date>,
#   host_location <chr>, host_about <chr>, host_response_time <chr>,
#   host_response_rate <chr>, host_acceptance_rate <chr>,
#   host_is_superhost <lgl>, host_thumbnail_url <chr>, host_picture_url <chr>,
#   host_neighbourhood <chr>, host_listings_count <dbl>, …

Creating a simple feature dataframe from an aspatial dataframe

st_as_sf() can be used to convert the listing dataframe into a simple feature dataframe. Note that:

  1. coords argument requires the column name of the x-coordinates first (longitude) then the column name of the y-coordinates (latitude)
  2. crs argument requires the specific coordinates system. As we suspect the coordinate system of listings to be WGS84, this would be crs = 4326 . Singapore’s EPSG code is 3414 as we have used before.
  3. We use %>% in dplyr to nest st_transform() to reproject the new simple feature dataframe into SVY21 (EPSG: 3414) coordinates system.
listings_sf <- st_as_sf(listings,
                        coords = c('longitude','latitude'),
                        crs=4326)%>%
  st_transform(crs=3414)

glimpse() can be used to view the new simple feature dataframe, its data types, and some row values. Notice that a new column called geometry has been added and longitude and latitude have been dropped.

glimpse(listings_sf)
Rows: 3,483
Columns: 74
$ id                                           <dbl> 71609, 71896, 71903, 2753…
$ listing_url                                  <chr> "https://www.airbnb.com/r…
$ scrape_id                                    <dbl> 2.023092e+13, 2.023092e+1…
$ last_scraped                                 <date> 2023-09-23, 2023-09-23, …
$ source                                       <chr> "previous scrape", "previ…
$ name                                         <chr> "Villa in Singapore · ★4.…
$ description                                  <chr> "For 3 rooms.Book room 1&…
$ neighborhood_overview                        <chr> NA, NA, "Quiet and view o…
$ picture_url                                  <chr> "https://a0.muscache.com/…
$ host_id                                      <dbl> 367042, 367042, 367042, 1…
$ host_url                                     <chr> "https://www.airbnb.com/u…
$ host_name                                    <chr> "Belinda", "Belinda", "Be…
$ host_since                                   <date> 2011-01-29, 2011-01-29, …
$ host_location                                <chr> "Singapore", "Singapore",…
$ host_about                                   <chr> "Hi My name is Belinda -H…
$ host_response_time                           <chr> "within a few hours", "wi…
$ host_response_rate                           <chr> "100%", "100%", "100%", "…
$ host_acceptance_rate                         <chr> "100%", "100%", "100%", "…
$ host_is_superhost                            <lgl> FALSE, FALSE, FALSE, FALS…
$ host_thumbnail_url                           <chr> "https://a0.muscache.com/…
$ host_picture_url                             <chr> "https://a0.muscache.com/…
$ host_neighbourhood                           <chr> "Tampines", "Tampines", "…
$ host_listings_count                          <dbl> 5, 5, 5, 52, 52, 5, 7, 52…
$ host_total_listings_count                    <dbl> 15, 15, 15, 65, 65, 15, 8…
$ host_verifications                           <chr> "['email', 'phone']", "['…
$ host_has_profile_pic                         <lgl> TRUE, TRUE, TRUE, TRUE, T…
$ host_identity_verified                       <lgl> TRUE, TRUE, TRUE, TRUE, T…
$ neighbourhood                                <chr> NA, NA, "Singapore, Singa…
$ neighbourhood_cleansed                       <chr> "Tampines", "Tampines", "…
$ neighbourhood_group_cleansed                 <chr> "East Region", "East Regi…
$ property_type                                <chr> "Private room in villa", …
$ room_type                                    <chr> "Private room", "Private …
$ accommodates                                 <dbl> 3, 1, 2, 1, 1, 4, 2, 1, 1…
$ bathrooms                                    <lgl> NA, NA, NA, NA, NA, NA, N…
$ bathrooms_text                               <chr> "1 private bath", "Shared…
$ bedrooms                                     <dbl> NA, NA, NA, NA, NA, 3, NA…
$ beds                                         <dbl> 3, 1, 2, 1, 1, 5, 1, 1, 1…
$ amenities                                    <chr> "[\"Private backyard \\u2…
$ price                                        <chr> "$150.00", "$80.00", "$80…
$ minimum_nights                               <dbl> 92, 92, 92, 60, 60, 92, 9…
$ maximum_nights                               <dbl> 365, 365, 365, 999, 999, …
$ minimum_minimum_nights                       <dbl> 92, 92, 92, 60, 60, 92, 9…
$ maximum_minimum_nights                       <dbl> 92, 92, 92, 60, 60, 92, 9…
$ minimum_maximum_nights                       <dbl> 1125, 1125, 1125, 1125, 1…
$ maximum_maximum_nights                       <dbl> 1125, 1125, 1125, 1125, 1…
$ minimum_nights_avg_ntm                       <dbl> 92, 92, 92, 60, 60, 92, 9…
$ maximum_nights_avg_ntm                       <dbl> 1125, 1125, 1125, 1125, 1…
$ calendar_updated                             <lgl> NA, NA, NA, NA, NA, NA, N…
$ has_availability                             <lgl> TRUE, TRUE, TRUE, TRUE, T…
$ availability_30                              <dbl> 28, 28, 28, 1, 30, 28, 30…
$ availability_60                              <dbl> 58, 58, 58, 1, 60, 58, 60…
$ availability_90                              <dbl> 88, 88, 88, 1, 90, 88, 90…
$ availability_365                             <dbl> 89, 89, 89, 275, 274, 89,…
$ calendar_last_scraped                        <date> 2023-09-23, 2023-09-23, …
$ number_of_reviews                            <dbl> 20, 24, 47, 22, 17, 12, 1…
$ number_of_reviews_ltm                        <dbl> 0, 0, 0, 0, 3, 0, 0, 1, 3…
$ number_of_reviews_l30d                       <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 1…
$ first_review                                 <date> 2011-12-19, 2011-07-30, …
$ last_review                                  <date> 2020-01-17, 2019-10-13, …
$ review_scores_rating                         <dbl> 4.44, 4.16, 4.41, 4.40, 4…
$ review_scores_accuracy                       <dbl> 4.37, 4.22, 4.39, 4.16, 4…
$ review_scores_cleanliness                    <dbl> 4.00, 4.09, 4.52, 4.26, 4…
$ review_scores_checkin                        <dbl> 4.63, 4.43, 4.63, 4.47, 4…
$ review_scores_communication                  <dbl> 4.78, 4.43, 4.64, 4.42, 4…
$ review_scores_location                       <dbl> 4.26, 4.17, 4.50, 4.53, 4…
$ review_scores_value                          <dbl> 4.32, 4.04, 4.36, 4.63, 4…
$ license                                      <chr> NA, NA, NA, "S0399", "S03…
$ instant_bookable                             <lgl> FALSE, FALSE, FALSE, TRUE…
$ calculated_host_listings_count               <dbl> 5, 5, 5, 52, 52, 5, 7, 52…
$ calculated_host_listings_count_entire_homes  <dbl> 0, 0, 0, 1, 1, 0, 1, 1, 1…
$ calculated_host_listings_count_private_rooms <dbl> 5, 5, 5, 51, 51, 5, 6, 51…
$ calculated_host_listings_count_shared_rooms  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ reviews_per_month                            <dbl> 0.14, 0.16, 0.31, 0.17, 0…
$ geometry                                     <POINT [m]> POINT (41972.5 3639…

Geoprocessing with sf package

The sf package offers a wide range of geoprocessing (GIS) functions.

In this section, you will learn how to perform two commonly used geoprocessing functions, namely buffering and point in polygon count.

Buffering

The scenario:

The authority is planning to upgrade the exiting cycling path. To do so, they need to acquire 5 metres of reserved land on the both sides of the current cycling path. You are tasked to determine the extend of the land need to be acquired and their total area.

The solution

We can use st_buffer() to compute the 5-meter buffers around cycling paths

buffer_cycling <- st_buffer(cyclingpath, dist =5,
                            nQuadSegs = 30)

We can then calculate the area of each of the buffers using st_area()

buffer_cycling$AREA <- st_area(buffer_cycling)

Lastly, we can sum up all the areas of the buffers to derive the total land involved

sum(buffer_cycling$AREA)
1774367 [m^2]

Point-in-polygon count

The scenario:

A pre-school service group want to find out the numbers of pre-schools in each Planning Subzone.

The solution:

We can: first, identify pre-schools located inside each Planning Subzone by using st_intersects(), second, length() can be used to calculate number of pre-schools that falls inside each planning subzone.

mpsz3414$`PreSch Count` <- lengths(st_intersects(mpsz3414, preschool3414))

summary() can be used to check the summary statistics of the newly created PreSch Count column in mpsz3414

summary(mpsz3414$`PreSch Count`)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00    0.00    4.00    7.09   10.00   72.00 

top_n() can be used to list the top n planning subzone with the highest number of pre-school

top_n(mpsz3414,1,`PreSch Count`)
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 39655.33 ymin: 35966 xmax: 42940.57 ymax: 38622.37
Projected CRS: SVY21 / Singapore TM
  OBJECTID SUBZONE_NO     SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N PLN_AREA_C
1      189          2 TAMPINES EAST    TMSZ02      N   TAMPINES         TM
     REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR   Y_ADDR SHAPE_Leng
1 EAST REGION       ER 21658EAAF84F4D8D 2014-12-05 41122.55 37392.39   10180.62
  SHAPE_Area                       geometry PreSch Count
1    4339824 MULTIPOLYGON (((42196.76 38...           72

We can also calculate the density of preschool by planning subzone:

First, st_area() can be used to derive the area of each planning subzone.

mpsz3414$AREA <- mpsz3414%>%
  st_area()

Next, mutate() can be used to compute the density by using the previously created ‘PreSch Count’ and ‘AREA’ columns

mpsz3414 <- mpsz3414 %>%
  mutate(`PreSch Density` = (`PreSch Count`/AREA)*1000000)

We can extract the planning subzone with the highest preschool density using top_n()

top_n(mpsz3414,1,`PreSch Density`)
Simple feature collection with 1 feature and 18 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 29501.64 ymin: 28623.75 xmax: 29976.93 ymax: 29362.03
Projected CRS: SVY21 / Singapore TM
  OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND    PLN_AREA_N PLN_AREA_C
1       27          8     CECIL    DTSZ08      Y DOWNTOWN CORE         DT
        REGION_N REGION_C          INC_CRC FMEL_UPD_D  X_ADDR   Y_ADDR
1 CENTRAL REGION       CR 65AA82AF6F4D925D 2014-12-05 29730.2 29011.33
  SHAPE_Leng SHAPE_Area                       geometry PreSch Count
1   2116.095   196619.9 MULTIPOLYGON (((29808.18 28...            7
            AREA   PreSch Density
1 196619.9 [m^2] 35.60169 [1/m^2]

Exploratory Data Analysis (EDA)

hist() can be used to plot a histogram to reveal the distribution of PreSch Density

hist(mpsz3414$`PreSch Density`)

ggplot2 allows us to draw a more complex plot with more customization option

ggplot(data = mpsz3414,
       aes(x=as.numeric(`PreSch Density`)))+
  geom_histogram(bins=20,
                 color='black',
                 fill = 'light blue')+
  labs(title = 'Are pre-school evenly distributed in Singapore?',
       subtitle = 'There are many planning sub-zones with a single pre-school while \n there are some planning sub-zones with at least 20 pre-schhools',
       x = 'Pre-school density (per km sq)',
       y = 'Frequency')

We can also create a scatter plot to display the relationship between Pre-School Density and Pre-School Count

ggplot(data = mpsz3414,
       aes(x = as.numeric(`PreSch Density`),
           y = `PreSch Count`))+
  geom_point(color = 'black')+
  xlim(0, 40)+
  ylim(0, 40)+
  labs(x = 'Pre-school density (per km sq',
       y = 'Pre-school count')